
Dynamically blacklisting hackers attacking an Apache web server

Table of Contents
Overview..2
Apache ReWrite rules, why not to use them..2
Pre-requisites..3

A local firewall on your system...3
A stable website with no broken links in it..3

An overview of how automated blacklisting can be implemented for an apache web server..............4
An overview of how dynamic blacklisting using apache can be done..4
A special note for users of firewalld..4

The details, for iptables..5
Creating the blacklist chain..5
Creating the custom error pages..7
Sudoers requirements...12

Using firewalld instead of iptables...13
Things you must take into consideration..14
The main differences between iptables and netfilter..15

A note on this section...15
Viewing the firewall rules..15
An important observation on the use of iptables and netfilter...16
An important observation for docker users..16

Page 1

Dynamically blacklisting hackers attacking an Apache web server

Overview

This tutorial is not on how to secure a web server using fancy configuration files, but is primarily
intended in documenting how you can stop hackers and bots dead in the water before they can
query too much of your website simply.

It is intended for advanced Linux users that are comfortable with manually editing firewall rules;
not a requirement but you will have difficulty in following the document if you are not familiar with
firewall rules.

It is intended for Linux users that run apache and use either iptables or firewalld on their web
server. In this iteration of the document the focus is on iptables as that is what I use.

Anyone who has run their own web server for more than a few weeks will already have seen in their
web server access logs attempts to access resources such as ‘phpmyadmin’ searching for packages
you may have installed, and binary or large query strings trying to cause buffer overflows on their
webserver. The goal of this document is to show you an easy way to trap them and blacklist the
requesters ip-address.

Apache ReWrite rules, why not to use them

There are many tutorials out there on the internet on how to handle the first, a search for installed
applications. The large majority of them focus on using apache ReWrite rules to direct such requests
to custom error response pages or to cgi scripts to add firewall blacklist rules for the source of the
request.

The issue I have with this approach is that it requires you to know in advance what the query url
will be in order to create a ReWrite rule for it so this approach is not a valid protection.

These days bots and hacker toolkits use a wide range of url requests, you need a way to trap them
all which is not possible with apache rewrite rules that need a known string to match on. How I do
that is discussed a little below.

Page 2

Dynamically blacklisting hackers attacking an Apache web server

Pre-requisites

A local firewall on your system

You will need either iptables or firewalld installed and running on your web server in order to
blacklist machines that are running hacking attempts against your webserver.

You will also need to be comfortable with the firewall rules already in place, as you will need to
modify them.

A stable website with no broken links in it
This is a requirement as the method discussed here will blacklist any source ip-address that tries to
access a page that does not exist; and you will end up blacklisting search engines if you have broken
links in your website.

As noted above the method I discuss here will blacklist any source that tries to obtain a web page
that does not exist.

One issue with this is if you deliberately remove a page from your website it will affect search
engines. Search engines such as google and bing when re-indexing a site do not start at the top and
work their way through the site again, they will go directly to a page they ‘remember’ to re-index it
and if the page has been deleted they will trigger the blacklist scripts.

So you must regularly review your logs and for reasonable urls where nslookup shows the ip-
address belongs to a search engine you must manually un-blacklist that address.

Also see the “Things you must take into consideration” section when iptables are covered, as those
considerations apply to any automated blacklisting method you choose.

Note: For checking your website for broken links it is probably easiest to use a tool such as
OWASP. The easiest way to use that is to obtain Kali Linux where it is an option in the web testing
section as owasp-zap and will just work.

Page 3

Dynamically blacklisting hackers attacking an Apache web server

An overview of how automated blacklisting can be
implemented for an apache web server

An overview of how dynamic blacklisting using apache can be
done
As anyone who has run their own web server will have seen from their access logs there are
machines out there that will request many different pages that do not exist over a few seconds;
likewise fuzzing attempts from script kiddies using pre-canned scripts to test for buffer overflows
will send requests for A*100 them A*200 then A*300 etc and you want to stop them at the first
request.

To stop them all simply treat any request for a page that does not exist on your web server as a
attempt to hack into your web server and blacklist the address in your firewall in real time. This will
catch all attempts to access unknown applications and buffer overflow/fuzzing attempts on the first
request they make.

The trigger for capturing these attempts is already provided by apache with its custom error page
facility. While normally used for throwing up a custom page with pretty pictures and a ‘sorry page
not found’ message rather than have a static error page you can create an error page that is either a
php page or a less safe cgi-script and use those to handle the error. On sites that use php already you
are probably already using php pages to build your static response page.

As these error pages have all environment variables needed to perform blacklisting, namely the
source ip-address and url that was requested, these error pages as programmed pages rather than the
static pages can be used to dynamically add a blacklist rule for the source ip-address on the first
trigger; so instead of seeing many requests over a few seconds in the logs from an ip-address you
will see just the first request with all other requests blocked.

A special note for users of firewalld
Up until CentOS7/RHEL7/Fedora31 firewalld used iptables as the back-end for managing its rules,
allowing the iptables commands to be used for blacklisting regardless of whether you used native
iptables or firewalld.

From CentOS8/RHEL8/Fedora32 onward firewalld uses netfilter instead of iptables as the back-
end, as such the procedures documented for use using iptables will not work on those releases.
Users have a choice of learning how to use complicated firewall-cmd commands or even more
complicated native nft commands to achieve the same thing.

Page 4

Dynamically blacklisting hackers attacking an Apache web server

The details, for iptables

Creating the blacklist chain

Most iptables rules are setup to pass traffic from the local network down one chain, and from
external networks down another chain.

While it may therefore seem the best option is to place the blacklist rules in the chain used for
external traffic I prefer to place the my blacklist chain where it handles all input traffic. The benefit
of doing so is that the rules can be tested from the local network.

Iptables are generally loaded at boot time from either a static/saved configuration or from a script
you manually maintain that is run at server boot time. While either method achieves the same result

I prefer to use the rc.firewall script method as
1. I deploy it using puppet to make it easy to deploy as needed
2. it is easy to restore from backups of the system should it be needed
3. and the main reason for me, it is possible to include a lot of comments in the script

documenting the flow of traffic through the chains and what each port permitted is actually
used for

If you rely on a saved configuration method I hope you have a lot of documentation lying around as
depending on complexity dumping out the rules from a saved configuration may not be much help
in determining what your firewall is doing.

Page 5

Dynamically blacklisting hackers attacking an Apache web server

In my iptables configuration script I have added code as below

iptables -N logdrop3 # see note3 below
iptables -A logdrop3 -j LOG --log-prefix "BLACKLIST " \
 --log-level 3 --log-ip-options --log-tcp-options \
 --log-tcp-sequence
iptables -A logdrop3 -j DROP

iptables -N blacklist
if [-f /some/dir/blacklist.sh]; # See note2 below
then
 bash /some/dir/blacklist.sh
fi
iptables -A blacklist -j RETURN
iptables -A INPUT -j blacklist # see Note1 below

The code above creates a chain named “blacklist”, ensures the last line of the blacklist chain is a
command to return from that chain if no rules match to resume normal rule processing, and then
direct all input through the blacklist chain.

Note1: the -A option is used to append this to any existing INPUT chain rules; I obviously have
some rules above this code in my rc.firewall script to allow local loopback traffic.

Note2: the code here checks to see if we have a list of blacklist commands that need to be loaded
already predefined and runs the command file if found. How this file is created is covered in the
custom error page section.

Note3: the logdrop3 chain I added simply to log the attempts to access the server from blacklisted
addresses, you will see later on that when I blacklist an ip-address I send it to that chain to log and
drop, you may prefer to just drop it and avoid the extra chain. That is discussed in the custom error
page script section.

Once this rule is in place we have a clearly defined place to store the blacklist rules.

The advantages of using a separate chain for the blacklist entries are
• self documenting as to what the rules are for
• rules can be inserted/removed from that chain without affecting any other complicated

chaining rules you may have
• in the case of issues the rules for that one chain can be flushed without affecting any other

rules with a simple “iptables -F blacklist;iptables -A blacklist -j RETURN” to remove all the
rules and re-add the return rule.

To use something similar if you only use a static configuration you will need to identify where in
your configuration to insert a INPUT rule to jump to a blacklist chain and define an empty blacklist
chain with a return. After which you will be able to dynamically insert entries into the blacklist
chain as I discuss here (remembering to save your changes a lot during server operation) .

You would not need to redefine the blacklist chain or load any separately saved blacklist entries at
server boot time as your static saved configuration will contain them.

Page 6

Dynamically blacklisting hackers attacking an Apache web server

Creating the custom error pages
It is important to note that when creating custom scripted error pages the apache server may (and in
most cases will not) send the expected response code for a failed url request.

For example is a page not found (404) error should be sent if you return a perfectly formatted
scripted page the requester will actually get a OK (200) response in most cases. For static html error
pages apache can insert the correct headers, in a scripted page whether PHP or BASH where you
are creating the entire response page and inserting your own headers the default will be OK.

This may not be an issue for you, as some sites such as “null-byte” explicitly return OK (200) for
pages that are not found in order to confuse hackers that are trying to investigate their site (but it
must play havoc with search engines).

However I believe a custom error page should return the correct code in most cases, and it is
extremely easy to do in both php and bash as follows

For PHP
http_response_code(404);

For BASH shell script before any html code is sent (yes you do need two blank lines)
cat << EOF
Content-Type: text/html
Status: 404 Not Found

EOF
 fi

It is probably preferable to use PHP for a custom error page to take benefit of its functions to escape
any data encoded in the url string. However if you wish to write your error page entirely in BASH
shell code it is worth noting that all the server environment variables available to PHP are also
available to BASH (for example $_SERVER[‘REQUEST_URI’] in PHP is available to BASH as
the environment variable $REQUEST_URI) so if you prefer coding in bash to PHP it is simple to
do so.

For simplicity, as more people are able to code in BASH than in PHP most of the code here will be
for bash.

However as I strongly recommend if you intend to do anything with the URL requested it should as
least be passed through a few functions to sanitise the input the examples here are actually a PHP
front-end which then passes that data to a bash script.

Page 7

Dynamically blacklisting hackers attacking an Apache web server

This is a PHP front-end than can be used for a not found (404) page. The key points are that it
escapes characters in the url before risking passing then to exec and the bash script.

<?php
/*
 This is a wrapper that sanity checks the input;
 then pass it to the shell script.
*/
http_response_code(404);
/* header("HTTP/1.0 404 Not Found"); */
$xx = escapeshellcmd($_SERVER['REQUEST_URI']);
$xx = escapeshellarg($xx);

/* note the below must be on one line */
$cmd = "/var/www/cgi-bin/error_404_handler.sh '".$xx."' '".
$_SERVER['REMOTE_ADDR']."' '".$_SERVER['REQUEST_METHOD']."'";

exec($cmd, $output);
foreach($output as &$xx) {
 echo $xx;
}
?>

This is a shell script that can be invoked by the above front-end. The key points to note in the script
itself will be covered below the script. This is an extremely cut-down version of a script that can
be used, see the notes in the section “things you must take into consideration” on things I do that
you also must do to make the script usable without adverse effect.

#!/bin/bash
#
Called by a redirect rule when a website user tries to access
something we do not have installed (ie: phpMyAdmin and Mail seem
to be targeted by people trawling the site).
#
(1) if not in the blacklist file
(a) add to the blacklist file (with a datestamp at the
end of the command so we can clear old entries monthly
the blacklist file can be used to append the iptables
rules to the custom rule table during server reboots
(b) log that we have blacklisted it and what they were
trying to do
(2) if already in the blacklist file
(a) we should not have triggered, log the event for
investigation
#
Note: this script will issue the iptables command to add the
block rule immediately, so the webserver user needs to
be authorised to sudo the iptables command.

BLACKLIST="/some/dir/blacklist.sh" # This is embedded in rc.firewall startup
LOGFILE="/some/dir/blacklist.log" # This must be checked for bad blacklists
myname=`basename $0` # for log messages
datenow=`date` # for log messages

Page 8

Dynamically blacklisting hackers attacking an Apache web server

datestamp=`date +"%Y%m%d"` # datestamp iptable rules (for easy cleanup)

If called from the php wrapper with the variables we want
then use those as we will not have server globals availabe
as we would if called directly by apache.
PHP_WRAPPER="NO"
test1="$1"
test2="$2"
test3="$3"
if ["${test2}." != "."];
then
 REQUEST_URI="${test1}"
 REMOTE_ADDR="${test2}"
 REQUEST_METHOD="${test3}"
 PHP_WRAPPER="YES"
fi

--
helper proc: write a message to the logger and logfile
--
log_proc() {
 msg="$*"
 logger "${myname}:${msg}"
 echo "${datenow}:${msg}" >> ${LOGFILE}
} # end log_proc

--
helper proc: blacklist the ipaddr in iptables, save the command
in the blacklist file, so it can be re-applied each
system restart
--
do_blacklist() {
 # record into the blacklist file to use on system restarts
 echo "/sbin/iptables -w3 -A blacklist -j logdrop3 -s ${REMOTE_ADDR}" >> $
{BLACKLIST}
 # log that we have blacklisted this ipaddr
 log_proc "ipaddr ${REMOTE_ADDR} requested ${REQUEST_URI}, method $
{REQUEST_METHOD}, blacklisted (404)"
 # can be run by apache with no password (configured in sudoers file)
 /usr/bin/sudo /sbin/iptables -w3 -I blacklist -j logdrop3 -s $
{REMOTE_ADDR}
} # end do_blacklist

--
A hacking attempt then.
Display a web page back to the requesting user
Yes it needs the blank line after the content type.
Do this before adding the firewall rule or
the hacker will never see it.
--
if ["${PHP_WRAPPER}." == "NO."];
then
cat << EOF
Content-Type: text/html
Status: 404 NotFound

Page 9

Dynamically blacklisting hackers attacking an Apache web server

EOF
fi
cat << EOF
<html>
<head><title>Page not found on this server</title></head>
<body bgcolor="yellow">
<h1>Page not found on this server</h1>
<hr>
<p>
You have requested a page not provided by this website. Unfortunately this
generally indicates a hacking attempt.
</p>
<p>
You requested: ${REQUEST_URI}
</p>
<p>
Your ip-address ${REMOTE_ADDR} has been automatically added to this
sites blacklist.

You can no longer view any content from this site.
</p>
</body>
</html>
EOF

--
Now block all traffic to and from the ipaddress
that triggered this script.
If the blacklist file exists
- check if the entry exists, we do not want duplicates
- if the entry does not exist add it
- if the entry does exist we should not have triggered, log warning
--
if [-f ${BLACKLIST}];
then
 isfound=`grep \'${REMOTE_ADDR}\' ${BLACKLIST}`
 if ["${isfound}." = "."];
 then
 do_blacklist
 else
 log_proc "*WARN* blacklisted ipaddr ${REMOTE_ADDR} reached webserver,
investigate"
 fi
else
 do_blacklist
fi

All done
exit 0

Page 10

Dynamically blacklisting hackers attacking an Apache web server

The above script explained
• constants, BLACKLIST is where we store the iptables commands to use, LOGFILE is

where we log activity for historical review
• The start of the script is a quick test to see if we were called with parameters (such as from

the php script which passed the details we need) or if we were called directly by apache and
have the environment variables we need. The PHP_WRAPPER flag is used is we were
called by the php script to indicate we do not need to write the page headers

• note in the do_blacklist routine when writing the iptables command to the script file we use -
A as when the script file is run from the rc.firewall startup script it adds a lot of entries in
sequence before we finally add the -j RETURN command; but when we actually
dynamically add the drop command to the blacklist rule we use -I to insert the rule (as if we
appended we would add the drop after the return statement where it would never be
triggered)

• for apache to run the iptables command it must be configured in the sudoers file
• we write the response page to the requester before adding the drop rule, if we added it earlier

they would never see the response
• we check if the ip-address is already in our blacklist file before adding it, as if it was already

there we have an issue to investigate as the request should have been dropped
• the iptables command jumps to the logdrop3 chain to log and drop any future requests, if

you do not want to log just “-j DROP” instead of “-j logdrop3” and you do not need to
define the logdrop3 chain at all

The above example script is not production-ready. A lot of important logic has been removed in
order to make the script as clear as possible to follow. See the section on “Things you must take into
consideration” for the additional things you should be adding into this script.

Page 11

Dynamically blacklisting hackers attacking an Apache web server

Sudoers requirements

For commands using iptables the apache user must be able to sudo to run the commands. This needs
to be limited as much as possible to the exact command actually needed to add the iptables rule.

Also with the webserver running the command it must be able to be done without a prompt for a
password.

This is an example of the sudoers entry needed is the webserver runs under the apache userid.
Defaults:apache !requiretty
apache vosprey4=NOPASSWD: /sbin/iptables -w3 -I blacklist -j DROP -s *

Page 12

Dynamically blacklisting hackers attacking an Apache web server

Using firewalld instead of iptables

Firewalld is not as friendly to configure as iptables, and is not easy to implement internal/external
traffic splitting rules within a zone. So if using firewalld it is best to use the predefined zones.

First you need to determine what zones you are using, and how your interfaces are laid out.

First use “ifconfig -a” (in the net-tools package) or “ip a” to determine what interfaces are in your
system.

Then for each use “firewall-cmd --get-zone-of-interface ifacename” to see what zone each interface
is attached to.

Then use “firewall-cmd –get-active-zone” to determine what zones are in use.

Also use “firewall-cmd --get-default-zone” to determine the default zone for commands; although
to be safe you should always specify a target zone for all update commands to avoid issues.

At this point you may want to adjust the zone in which interfaces belong to and change the active
zone; or just use the already active zone, totally up to you. You may even want to create a custom
zone. All are easy to do but as noted at the start of this document this is not for novices and the steps
to do so are not covered here.

It is also important to note you cannot add a “blacklist” zone, as any drop rules can only be added to
zones that contain network interfaces.

The same method as described for using iptables can be used to deny traffic from a specific ip-
address on a firewalld system using a “rich” firewalld rule using the command below.

firewall-cmd --permanent –nameofzone \
 --add-rich-rule="rule family='ipv4' \
 source address='ip-address' drop"

Also run the command without the permanent command to make it immediately active without
having to reload the firewall rules.

It using the script template shown above for iptables you should still write what you are blocking to
a log file but there is no point in saving the commands to a command file as the –permanent option
will ensure the rule survives across reboots.

Page 13

Dynamically blacklisting hackers attacking an Apache web server

Things you must take into consideration
Why the sample iptables script logic will work for either iptables (as is) or firewalld (if you change
the sudo command to the appropriate firewall-cmd command) , the additional things I do that you
must also take into consideration and most likely want to implement yourself are

• before the section that writes the page back to the hacker and adds the ip-address to the
blacklist check the requesting ip-address
◦ if from local addresses display a custom page asking the user to contact the admin to

correct whatever link they followed and do not blacklist the ip-address, an internal user
is most likely following a bad link you need to fix (depending on the number of users
you have; you may actually want to blacklist and show a page asking them to contact the
site admin to be unblacklisted)

◦ have a list of addresses not to blacklist, these will be such things such as the gogglebot
web crawling address range, they will try to re-index pages they know about even if the
pages have been removed from the server and if they get a 404 response both google and
bing ignore the 404 error and they will just try and re-index again later. For these
addresses return a 410 (permanently deleted) rather than blacklist the address… and if
they ignore that and still try and re-index the page then let them be blocked. Ideally you
would not want to blacklist search engines but their insistence on ignoring 404 errors
makes it inevitable unless you have special handling for them

• have a batch job that runs daily to sort|uniq the blacklist command file, sometimes is a
hacker is hammering the site a few requests will trigger blacklist additions before the first
trigger loads the drop rule (a cleanup job)

• review the blacklist log often to identify requests that do not appear to be hacking attempts
but honest mistakes and unblock them

• have a check at the top of the script for any ip-address you use on the internal network for
website scanning, and ‘fast exit’ the script if from that address to avoid blocking it

• in relation to the above point, scan your website whenever you make changes to identify any
pages that may have links referring to non-existent pages and correct the links. You do not
want to blacklist someone for innocently following a link on your site.

Page 14

Dynamically blacklisting hackers attacking an Apache web server

The main differences between iptables and netfilter

A note on this section
These observations do not in any way affect the methodology of blacklisting ip-addresses to your
server. This section exists to point out the differences between the two, that may in some cases
prevent your rules from being triggered.

Viewing the firewall rules
As noted earlier up until CentOS7/RHEL7/Fedora31 firewalld used iptables as its back-end. From
CentOS8/RHEL8/Fedora32 onward firewalld uses netfilter as its back-end.

Iptables uses the iptables command and can dump out its rules in a simple text format that is
reasonably easy to read. Netfilter uses the nft command and the rules are not so easy to read when
dumped out.

Examples
iptables syntax to show rules
iptables -S
iptables -n -v -L

nft syntax to show rules
nft list ruleset

Page 15

Dynamically blacklisting hackers attacking an Apache web server

An important observation on the use of iptables and netfilter
On a CentOS8 machine where I use native iptables and do not run firewalld any rules added via
iptables commands are automatically created in such a way that they are displayable as both
iptables and netfilter rules. I do not have a F32 machine running only iptables so no observation
there.

On Both Fedora32 and CentOS8 rules added via firewalld are displayable as netfilter rules but there
are zero entries returned from iptables.

So at this point in time it may seem safer to use iptables as the rules are implemented into both
solutions. However there are warnings about using both iptables and netfilter on the same system as
there may be unexpected results.

However if using only firewalld as rules set for firewalld do not create iptables rules you must
endure your server is configured to use only netfilter for all traffic.

An important observation for docker users
Both docker and docker-ce will add both netfilter and iptables rules regardless of which firewall
solution you have chosen for you server when the docker engine is started. This is just something to
be aware of.

Page 16

	Overview
	Apache ReWrite rules, why not to use them
	Pre-requisites
	A local firewall on your system
	A stable website with no broken links in it

	An overview of how automated blacklisting can be implemented for an apache web server
	An overview of how dynamic blacklisting using apache can be done
	A special note for users of firewalld

	The details, for iptables
	Creating the blacklist chain
	Creating the custom error pages
	Sudoers requirements

	Using firewalld instead of iptables
	Things you must take into consideration
	The main differences between iptables and netfilter
	A note on this section
	Viewing the firewall rules
	An important observation on the use of iptables and netfilter
	An important observation for docker users

